OWASP Guide 2.0

Session Management

Objective

To ensure that 

· authenticated users have a robust and cryptographically secure association with their session

· enforce authorization checks

· prevent common web attacks, such as replay, request forging and man-in-the-middle attacks

Environments Affected

All. 

Relevant COBIT Topics

PO8 – All sections should be reviewed

PO8.4 – Privacy, Intellectual proeprty and data flow

Description

Thick client applications innately store local data ("state") in memory allocated by the operating system for the duration of the program's run, such as global, heap and stack variables. With web applications, the web server serves up pages in response to client requests. By design, the web server is free to forget everything about pages it has rendered in the past, as there is no explicit state. 

This works well when rendering static content, such as a brochure or image, but not so well when you want to do real work, such as filling out a form, or if you have multiple users you need to keep separate, such as in an online banking application.

Web servers are extended by application frameworks, such as J2EE or ASP.NET, implementing a state management scheme tying individual user's requests into a "session" by tying a cryptographically unique random value stored in a cookie (or elsewhere within client submitted data) against state held on the server, giving users the appearance of a stateful application. The ability to restrict and maintain user actions within unique sessions is critical to web security.

Although most users of this guide will be using an application framework with built in session management capabilities, others will use languages such as Perl CGI that do not. They are at an immediate disadvantage as the developers may be forced to create a session management scheme from scratch. These implementations are often weak and breakable. Another common mistake is to implement a weak session management scheme on top of a strong one. It is theoretically possible to write and use a cryptographically secure session management scheme, which is the focus of this chapter. However, for mere mortals, it cannot be stressed highly enough to use an application framework which has adequate session management. There is no value in re-writing such basic building blocks.

Application frameworks such as J2EE, PHP, ASP and ASP.NET take care of much of the low level session management details and allow fine level control at a programmatic level, rather than at a server configuration level. For example, ASP.NET uses an obfuscated tamper-resistant "view state" mechanism, which renders a hidden field in each page. View state can be used to transmit insensitive variables, web control locations, and so on. Using programmatic means, it's possible to include or exclude a variable from the view state, particularly if you don't need a control’s state to be available between different pages of the same application. It is also possible to encrypt view state if you are likely to transmit sensitive data to the user, but it is better if such variables are kept in the server-side session object. This can save download time, reduce bandwidth, and improve execution times. Careful management of the view state is the difference between a well-optimized application, and a poorly performing application. 

Best practices

Best practice is to not re-write the wheel, but to use a robust, well-known session manager. Most popular web application frameworks contain a suitable implementation. However, early versions often had significant weaknesses. Always use the latest version of your chosen technology, as its session handler will likely be more robust and use cryptographically strong tokens. Use your favorite search engine to determine if this is indeed the case. 

Consider carefully where you store application state:

· Authorization and role data should be stored on the server side only

· Navigation data is almost certainly acceptable in the URL as long as it can be validated and authorization checks are effective

· Presentation flags (such as theme or user language) can belong in cookies.

· Form data should not contain hidden fields – if it is hidden, it probably needs to be protected and only available on the server side. However, hidden fields can (and should) be used for sequence protection and to prevent brute force pharming attacks

Data from multi-page forms can be sent back to the user in two cases: 

· When there are integrity controls to prevent tampering

· When data is validated after every form submission, or at least by the end of the submission process

· Application secrets (such as server-side credentials and role information) should never be visible to the client. These must be stored in a session or server-side accessible way

If in doubt, do not take a chance and stash it in a session.

Misconceptions

Sessions have an undeserved poor reputation with some programmers, particularly those from Java backgrounds who prefer the ease of programming stateless server side components. However, this is simply wrong from a security and performance perspective, as state must be stored somewhere, and sensitive state must be stored on the server in some fashion. The alternative, storing all state within each request, leads to extensive use of hidden fields and extra database queries to avoid server-side session management, and is vulnerable to replay and request forgery attacks, as well as producing complex code.

Another common misperception is that they take up valuable server resources. This was true when servers were RAM constrained, but is not true today. Indeed, transmitting session data to a client, and then decoding, de-serializing, performing tampering checks, and lastly validating the data upon each request requires higher server resource consumption than keeping it safe inside a session object.

Permissive Session Generation
Many web application frameworks will simply issue a new requestor a valid session ID if one does not exist. This is called “permissive session generation”, and coupled with some forms of phishing and an associated lack of authorization, this attack can be devastating. 
How to determine if you are vulnerable

· Open a fresh browser to connect to a protected page or action deep in the application. 
· If a new session ID is generated and the page works, the authorization controls make a false assumption about the validity of the session variable. 

How to protect yourself

· When starting a fresh session object for a user, make sure they are in the “logged off” state and are granted no role 

· Ensure that each protected page or action checks the authentication state and authorization role before performing any significant amount of work, including rendering content. 

· Ensure that all unprotected pages use as few resources as possible to prevent denial of service attacks, and do not leak information about the protected portion of the application

Exposed Session Variables

Some frameworks use shared areas of the web server’s disk to store session data. In particular, PHP uses /tmp on Unix and c:\windows\temp on Windows by default. These areas provide no protection for session data, and may lead to compromise of the application if the web server is shared or compromised. 

How to determine if you are vulnerable

· Investigate the configuration of the application framework 

· Does it store the session in memory, on disk, or in a database? 

· If on disk or in a database, who else can read the session data?

How to protect yourself

· Ensure the application server is configured to use private temporary file areas per client / application. 

· If this is not possible, the session data needs to be encrypted or contain only non-sensitive data
Page and Form Tokens

Page specific tokens or "nonces" may be used in conjunction with session specific tokens to provide a measure of authenticity when dealing with client requests. Used in conjunction with transport layer security mechanisms, page tokens can aide in ensuring that the client on the other end of the session is indeed the same client that requested the last page in a given session. Page tokens are often stored in cookies or query strings and should be completely random. It is possible to avoid sending session token information to the client entirely through the use of page tokens, by creating a mapping between them on the server side, this technique should further increase the difficulty in brute forcing session authentication tokens.

How to determine if you are vulnerable

Does your application:

· Require the back button to be hidden?

· Suffer from preset session attacks?
How to protect yourself

· Incorporate a hidden field with a cryptographically secure page or form nonce 

· The nonce should be removed from the active list as soon as it is submitted to prevent page or form re-submission

Weak Session Cryptographic Algorithms 

If a session handler issues tokens which are predictable, an attacker does not need to capture session variables from the remote users – they can simply guess and will most likely find an unfortunate victim. Session tokens should be user unique, non-predictable, and resistant to reverse engineering. 

How to determine if you are vulnerable

· Ask for 1000 session IDs and see if they are predictable (plotting them helps identify this property)

· Investigate the source of the session handler to understand how session IDs are generated. They should be created from high quality random sources.

How to protect yourself

· A trusted source of randomness should be used to create the token (like a pseudo-random number generator, Yarrow, EGADS, etc.).

· Additionally, for more security, session tokens should be tied in some way to a specific HTTP client instance (session ID and IP address) to prevent hijacking and replay attacks. 

Examples of mechanisms for enforcing this restriction may be the use of page tokens that are unique for any generated page and may be tied to session tokens on the server. In general, a session token algorithm should never be based on or use as variables any user personal information (user name, password, home address, etc.)

Appropriate Key Space

Even cryptographically secure algorithms allow an active session token to be easily determined if the keyspace of the token is not sufficiently large. Attackers can essentially "grind" through most possibilities in the token's key space with automated brute-force scripts. A token's key space should be sufficiently large enough to prevent these types of brute force attacks, keeping in mind that computation and bandwidth capacity increases will make these numbers insufficient over time.

Session Token Entropy

The session token should use the largest character set available to it. If a session token is made up of say 8 characters of 7 bits the effective key length is 56 bits. However if the character set is made up of only integers that can be represented in 4 bits giving a key space of only 32 bits. A good session token should use all the available character set including case sensitivity.

Session Time-out
Session tokens that do not expire on the HTTP server can allow an attacker unlimited time to guess or brute-force a valid authenticated session token. An example is the "Remember Me" option on many retail websites. If a user's cookie file is captured or brute-forced, then an attacker can use these static-session tokens to gain access to that user's web accounts. This problem is particularly severe in shared environment, where multiple users have access to one computer. Additionally, session tokens can be potentially logged and cached in proxy servers that, if broken into by an attacker, could be exploited if the particular session has not been expired on the HTTP server.

How to determine if you are vulnerable
Idle “Protection”

· Does the application do a meta-refresh or similar Javascript trick to force the session to never idle out? If so, the application is vulnerable.

Remember me?

· Does the application have a “remember me” feature? If so, the application is vulnerable

Faulty idle timeout

· Login to the application

· Go to lunch

· Try to use the application. Did it work? If so, the application is vulnerable

How to protect yourself

Set the idle timeout to 5 minutes for highly protected applications through to no more than 20 minutes for low risk applications

For highly protected applications:

· Do not write idle defeat mechanisms

· Do not write “remember me” functionality
Regeneration of Session Tokens
To reduce the risk from session hijacking and brute force attacks, the HTTP server can seamlessly expire and regenerate tokens. This shortens the window of opportunity for a replay or brute force attack.
How to determine if you are vulnerable
· Conduct a lengthy session with your application

· Note the Session ID at the start and after every significant test transaction

· If the session ID never changes, you may be at risk

How to protect yourself

This control is suited for highly protected sites. Token regeneration should be performed:

· prior to any significant transaction 

· after a certain number of requests 

· after as a function of time, say every 20 minutes or so.
Session Forging/Brute-Forcing Detection and/or Lockout
Many websites have prohibitions against unrestrained password guessing (e.g., it can temporarily lock the account or stop listening to the IP address), however an attacker can often try hundreds or thousands of session tokens embedded in a legitimate URL or cookie without a single complaint from the web site. Many intrusion-detection systems do not actively look for this type of attack; penetration tests also often overlook this weakness in web e-commerce systems

How to determine if you are vulnerable
· Use a HTTP intercepting proxy to tamper with the session ID 

· If the application context remains logged in, the application framework is faulty and should not be used.
How to protect yourself

· Consider using "booby trapped" session tokens that never actually get assigned but will detect if an attacker is trying to brute force a range of tokens. 

Resulting actions could be:

· Go slow or ban the originating IP address (which can be troublesome as more and more ISPs are using transparent caches to reduce their costs. Because of this: always check the "proxy_via" header)

· Lock out an account if you're aware of it (which may cause a user a potential denial of service).

· Anomaly/misuse detection hooks can also be built in to detect if an authenticated user tries to manipulate their token to gain elevated privileges.

· There are Apache web server modules, such as mod_dosevasive and mod_security, that could be used for this kind of protection. Although mod_dosevasive is used to lessen the effect of DoS attacks, it could be rewritten for other purposes as well

Session Token Transmission

If a session token is captured in transit through network interception, a web application account is then trivially prone to a replay or hijacking attack. Typical web encryption technologies include but are not limited to Secure Sockets Layer (SSLv3) and Transport Layer Security (TLS v1) protocols in order to safeguard the state mechanism token.

How to determine if you are vulnerable
All browsers are potentially vulnerable due to spyware, viruses and Trojans.
How to protect yourself

Associate the session ID, IP address, and other attributes from the user’s headers in a hash. If the hash changes, and more than one of the details has changed, it is likely that a session fixation attack has occurred.
Session Tokens on Logout

With the popularity of Internet Kiosks and shared computing environments on the rise, session tokens take on a new risk. A browser only destroys session cookies when the browser thread is torn down. Most Internet kiosks maintain the same browser thread. 

How to determine if you are vulnerable

“Logout” of the application

· Check the cookies to see if the session ID has changed or has been removed

· Check the cookies to see if all non-session related variables have been removed

How to protect yourself
When the user logs out of the application:
· Destroy the session 

· Overwrite session cookies.

Session Hijacking

When an attacker intercepts or creates a valid session token on the server, they can then impersonate another user. Session hijacking can be mitigated partially by providing adequate anti-hijacking controls in your application. The level of these controls should be influenced by the risk to your organization or the client's data; for example, an online banking application needs to take more care than a application displaying cinema session times.

The easiest type of web application to hijack are those using URL based session tokens, particularly those without expiry. This is particularly dangerous on shared computers, such as Internet cafés or public Internet kiosks where is nearly impossible to clear the cache or delete browsing history due to lockdowns. To attack these applications, simply open the browser's history and click on the web application's URL. Voila, you're the previous user.

How to determine if you are vulnerable

All browsers are potentially vulnerable due to spyware, viruses and Trojans.
How to protect yourself

· Provide a method for users to log out of the application. Logging out should clear all session state and remove or invalidate any residual cookies.

· Set short expiry times on persistent cookies, no more than a day or preferably use non-persistent cookies.

· Do not store session tokens in the URL or other trivially modified data entry point.

Session Authentication Attacks

One of the most common mistakes is not checking authorization prior to performing a restricted function or accessing data. Just because a user has a session does not authorize them to use all of the application or view any data.

A particularly embarrassing real life example is the Australian Taxation Office's GST web site, where most Australian companies electronically submit their quarterly tax returns. The ATO uses client-side certificates as authentication. Sounds secure, right? However, this particular web site initially had the ABN (a unique number, sort of like a social security number for companies) in the URL. These numbers are not secret and they are not random. A user worked this out, and tried another company's ABN. To his surprise, it worked, and he was able to view the other company's details. He then wrote a script to mine the database and mail each company's nominated e-mail address, notifying each company that the ATO had a serious security flaw. More than 17,000 organizations received e-mails.

How to determine if you are vulnerable

All browsers are potentially vulnerable due to spyware, viruses and Trojans.
How to protect yourself

Always check that the currently logged on user has the authorization to access, update or delete data or access certain functions.

Session Validation Attacks

Just like any data, the session variable must be validated to ensure that is of the right form, contains no unexpected characters, and is in the valid session table.

In one penetration test the author conducted, it was possible to use null bytes to truncate session objects and due to coding errors in the session handler, it only compared the length of the shortest string. Therefore, a one-character session variable was matched and allowed the tester to break session handling. During another test, the session handling code allowed any characters.

How to determine if you are vulnerable

· Use a HTTP intercepting proxy to tamper with the session ID 

· If the application context remains logged in, the application framework is faulty and should not be used.
How to protect yourself

Always check that the currently logged on user has the authorization to access, update or delete data or access certain functions.

Preset Session Attacks

An attacker will use the properties of your application framework to either generate a valid new session ID, or try to preset a previously valid session ID to obviate access controls.

How to determine if you are vulnerable

· Test if your application framework generates a new valid session ID by simply visiting a page. 

· Test if your application framework allows you to supply the session ID anywhere but a non-persistent cookie. For example, if using PHP, grab a valid PHPSESSIONID from the cookie, and insert it into the URL or as a post member variable like this:

· http://www.example.com/foo.php?PHPSESSIONID=xxxxxxx
· If this replay works, your application is at some risk, but at an even higher risk if the session ID can be used after the session has expired or the session has been logged off.

How to protect yourself

Ensure that the frameworks’ session ID can only be obtained from the cookie value. This may require changing the default behavior of the application framework, or overriding the session handler. 

Use session fixation controls (see next section) to strongly tie a single browser to a single session

Don’t assume a valid session equals logged in – keep the session authorization state secret and check authorization on every page or entry point.

Session Brute forcing

Some e-Commerce sites use consecutive numbers or trivially predictable algorithms for session IDs. On these sites, it is easy to change to another likely session ID and thus become someone else. Usually, all of the functions available to users work, with obvious privacy and fraud issues arising.

How to determine if you are vulnerable

· Open a valid session in one browser

· Use a session brute force tool, like Brutus to try and determine if you can resume that other session

· If Brutus is able to resume a session, the application framework requires greater session ID entropy
How to protect yourself

· Use a cryptographically sound token generation algorithm. Do not create your own algorithm, and seed the algorithm in a safe fashion. Or just use your application framework's session management functions.

· Preferably send the token to the client in a non-persistent cookie or within a hidden form field within the rendered page.

· Put in "telltale" token values so you can detect brute forcing.

· Limit the number of unique session tokens you see from the same IP address (ie 20 in the last five minutes).

· Periodically regenerate tokens to reduce the window of opportunity for brute forcing.

· If you are able to detect a brute force attempt, completely clear session state to prevent that session from being used again.

Session token replay

Session replay attacks are simple if the attacker is in a position to record a session. The attacker will record the session between the client and the server and replay the client's part afterwards to successfully attack the server. This attack only works if the authentication mechanism does not use random values to prevent this attack.

How to determine if you are vulnerable

· Take a session cookie and inject it into another browser

· Try simultaneous use – should fail

· Try expired use – should fail

How to protect yourself

· Tie the session to a particular browser by using a hash of the server-side IP address (REMOTE_ADDR) and if the header exists, PROXY_FORWARDED_FOR. Note that you shouldn’t use the client-forgeable headers, but take a hash of them. If the new hash doesn’t match the previous hash, then there is a high likelihood of session replay.

· Use session token timeouts and token regeneration to reduce the window of opportunity to replay tokens.

· Use a cryptographically well-seeded pseudo-random number generator to generate session tokens.

· Use non-persistent cookies to store the session token, or at worst, a hidden field on the form.

· Implement a logout function for the application. When logging off a user or idle expiring the session, ensure that not only is the client-side cookie cleared (if possible), but also the server side session state for that browser is also cleared. This ensures that session replay attacks cannot occur after idle timeout or user logoff.
Further Reading

· David Endler, "Brute-Force Exploitation of Web Application Session IDs"
http://downloads.securityfocus.com/library/SessionIDs.pdf 

· Ruby CGI::Session creates session files insecurely
http://www.securityfocus.com/advisories/7143
